Direkt zum Inhalt

Diese Website setzt ausschließlich technisch notwendige Cookies ein, die spätestens mit dem Schließen Ihres Browsers gelöscht werden. Wenn Sie mehr über Cookies erfahren möchten, klicken Sie bitte auf die Datenschutzerklärung.

DE EN
Anmelden
Logo, zur Startseite
  1. Sie sind hier:
  2. Pre-Trained Artificial Intelligence-Aided Analysis of Nanoparticles Using the Segment Anything Model
...

    Datenpaket: Pre-Trained Artificial Intelligence-Aided Analysis of Nanoparticles Using the Segment Anything Model

    • RADAR-Metadaten
    • Inhalt
    • Statistiken
    • Technische Metadaten
    Alternativer Identifier:
    -
    Verwandter Identifier:
    (Is Supplement To) 10.1038/s41598-025-86327-x - DOI
    Ersteller/in:
    Wittemann, Alexander https://orcid.org/0000-0002-8822-779X [University of Konstanz]
    Beitragende:
    (Researcher)
    Monteiro, Gabriel https://orcid.org/0000-0002-5049-1704 [University of Konstanz]

    (Researcher)
    Monteiro, Bruno https://orcid.org/0000-0001-7288-5504 [Universidade Federal de Minas Gerais]

    (Researcher)
    dos Santos, Jefersson https://orcid.org/0000-0002-8889-1586 [University of Sheffield]

    (Researcher)
    Wittemann, Alexander https://orcid.org/0000-0002-8822-779X [University of Konstanz]
    Titel:
    Pre-Trained Artificial Intelligence-Aided Analysis of Nanoparticles Using the Segment Anything Model
    Weitere Titel:
    -
    Beschreibung:
    (Abstract) Complex structures can be understood as compositions of smaller, more basic elements. The characterization of these structures requires an analysis of their constituents and their spatial configuration. Examples can be found in systems as diverse as galaxies, alloys, living tissues, cells, and even ... Complex structures can be understood as compositions of smaller, more basic elements. The characterization of these structures requires an analysis of their constituents and their spatial configuration. Examples can be found in systems as diverse as galaxies, alloys, living tissues, cells, and even nanoparticles. In the latter field, the most challenging examples are those of subdivided particles and particle-based materials, due to the close proximity of their constituents. The characterization of such nanostructured materials is typically conducted through the utilization of micrographs. Despite the importance of micrograph analysis, the extraction of quantitative data is often constrained. The presented effort demonstrates the morphological characterization of subdivided particles utilizing a pre-trained artificial intelligence model. The results are validated using three types of nanoparticles: nanospheres, dumbbells, and trimers. The automated segmentation of whole particles, as well as their individual subdivisions, is investigated using the Segment Anything Model, which is based on a pre-trained neural network. The subdivisions of the particles are organized into sets, which presents a novel approach in this field. These sets collate data derived from a large ensemble of specific particle domains indicating to which particle each subdomain belongs. The arrangement of subdivisions into sets to characterize complex nanoparticles expands the information gathered from microscopy analysis. The presented method, which employs a pre-trained deep learning model, outperforms traditional techniques by circumventing systemic errors and human bias. It can effectively automate the analysis of particles, thereby providing more accurate and efficient results.characterization of these structures involves analyzing their constituents and their spatial configuration. Examples are found in systems as diverse as galaxies, alloys, living tissues, cells, down to nanoparticles. In the latter field, subdivided particles and particle-based materials are among the most prominent. Such nanostructured materials are characterized using micrographs. Despite the importance of micrograph analysis, the extraction of quantitative data is often limited. The effort presented here demonstrates the morphological characterization of subdivided particles with a pre-trained artificial intelligence model. This method shows automated segmentation between subdivisions of particles using the Segment Anything Model, which is based on a pre-trained neural network. From this stage on, the subdivisions are organized into sets, which is a novelty in the field. These sets gather data derived from a large ensemble of specific particle domains and contain information to which particle each subdomain belongs. The arrangement of subdivisions into sets to characterize complex nanoparticles expands the information gathered from microscopy analysis. The results gained based on selected model colloids are compared to previously published results, demonstrating that the novel method avoids systemic errors and human bias.

    Complex structures can be understood as compositions of smaller, more basic elements. The characterization of these structures requires an analysis of their constituents and their spatial configuration. Examples can be found in systems as diverse as galaxies, alloys, living tissues, cells, and even nanoparticles. In the latter field, the most challenging examples are those of subdivided particles and particle-based materials, due to the close proximity of their constituents. The characterization of such nanostructured materials is typically conducted through the utilization of micrographs. Despite the importance of micrograph analysis, the extraction of quantitative data is often constrained. The presented effort demonstrates the morphological characterization of subdivided particles utilizing a pre-trained artificial intelligence model. The results are validated using three types of nanoparticles: nanospheres, dumbbells, and trimers. The automated segmentation of whole particles, as well as their individual subdivisions, is investigated using the Segment Anything Model, which is based on a pre-trained neural network. The subdivisions of the particles are organized into sets, which presents a novel approach in this field. These sets collate data derived from a large ensemble of specific particle domains indicating to which particle each subdomain belongs. The arrangement of subdivisions into sets to characterize complex nanoparticles expands the information gathered from microscopy analysis. The presented method, which employs a pre-trained deep learning model, outperforms traditional techniques by circumventing systemic errors and human bias. It can effectively automate the analysis of particles, thereby providing more accurate and efficient results.characterization of these structures involves analyzing their constituents and their spatial configuration. Examples are found in systems as diverse as galaxies, alloys, living tissues, cells, down to nanoparticles. In the latter field, subdivided particles and particle-based materials are among the most prominent. Such nanostructured materials are characterized using micrographs. Despite the importance of micrograph analysis, the extraction of quantitative data is often limited. The effort presented here demonstrates the morphological characterization of subdivided particles with a pre-trained artificial intelligence model. This method shows automated segmentation between subdivisions of particles using the Segment Anything Model, which is based on a pre-trained neural network. From this stage on, the subdivisions are organized into sets, which is a novelty in the field. These sets gather data derived from a large ensemble of specific particle domains and contain information to which particle each subdomain belongs. The arrangement of subdivisions into sets to characterize complex nanoparticles expands the information gathered from microscopy analysis. The results gained based on selected model colloids are compared to previously published results, demonstrating that the novel method avoids systemic errors and human bias.

    Zeige alles
    Schlagworte:
    image segmentation
    electron microscopy
    nanoparticles
    artificial intelligence
    segment anything model
    pattern recognition
    colloids
    image processing
    Zugehörige Informationen:
    -
    Sprache:
    Englisch
    Herausgeber/in:
    University of Konstanz
    Erstellungsjahr:
    2024
    Fachgebiet:
    Chemistry
    Materials Science
    Computer Science
    Objekttyp:
    (Dataset) Electron micrographs, imageJ macros, Phyton routines, descriptions
    Datenquelle:
    -
    Verwendete Software:
    -
    Datenverarbeitung:
    -
    Erscheinungsjahr:
    2025
    Rechteinhaber/in:
    Wittemann, Alexander https://orcid.org/0000-0002-8822-779X

    Monteiro, Gabriel https://orcid.org/0000-0002-5049-1704

    Monteiro, Bruno https://orcid.org/0000-0001-7288-5504

    dos Santos, Jefersson https://orcid.org/0000-0002-8889-1586
    Förderung:
    Deutsche Forschungsgemeinschaft (SFB 1214/B4)
    CAPES
    CNPq
    FAPEMIG
    Serrapilheira Institute
    Zeige alles Zeige weniger
    Name Speichervolumen Metadaten Upload Aktion
    Status:
    Publiziert
    Eingestellt von:
    a054244d3ce4bfd16eeb6d100a7f8c92
    Erstellt am:
    2024-06-13
    Archivierungsdatum:
    2025-01-21
    Archivgröße:
    207,6 MB
    Archiversteller:
    00a5910a2b77a3793bbf250744b60665
    Archiv-Prüfsumme:
    5402d05ddae80235e20877f66b868aef (MD5)
    Embargo-Zeitraum:
    -

    Standort

    • Konstanz, GERMANY
    • Belo Horizonte, BRAZIL
    • Sheffield, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND*
    DOI: 10.48606/EsfTYSZxEqPwiVkZ
    Publikationsdatum: 2025-01-21
    Datenpaket herunterladen
    Herunterladen (207,6 MB)

    Metadaten herunterladen
    Statistik
    0
    Views
    0
    Downloads
    Lizenz für das Datenpaket
    Dieses Werk ist lizenziert unter
    CC BY 4.0
    CC icon
    Datenpaket zitieren
    Wittemann, Alexander (2025): Pre-Trained Artificial Intelligence-Aided Analysis of Nanoparticles Using the Segment Anything Model. University of Konstanz. DOI: 10.48606/EsfTYSZxEqPwiVkZ
    • Über das Repository
    • Datenschutzerklärung
    • Nutzungsbedingungen
    • Impressum
    powered by RADAR
    1.22.6 (f) / 1.15.7 (b) / 1.22.3 (i)

    KonDATA ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus wissenschaftlichen Studien und Projekten. KonDATA ist ein Dienst der Universität Konstanz und wird vom Kommunikations-, Informations- und Medienzentrum der Universität betrieben. Über KonDATA können Forschende der Universität Konstanz [im Folgenden: Datengeber] Forschungsdaten zu Datenpaketen zusammenstellen, mit Metadaten beschreiben und dauerhaft speichern mit dem Ziel diese Daten öffentlich zugänglich zu machen. Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeber*innen statt.


    1. Das Nutzungsverhältnis zwischen Datennutzer*innen und der Universität Konstanz erschöpft sich im Download von Datenpaketen oder Metadaten. Die Nutzungsbedingungen richten sich nach den Vorgaben der Datengeber*innen. Die Universität behält sich vor, die Nutzung von KonDATA einzuschränken oder den Dienst ganz einzustellen.
    2. Nicht alle Datensätze in KonDATA sind frei zugänglich. Sofern Datengeber*innen sich die Rechte vorbehalten haben, kann Datennutzer*innen auf Anfrage Zugang gewährt werden. Voraussetzung ist in diesen Fällen eine Registrierung bzw. Legitimierung über Shibboleth.
    3. Persönliche Daten der Datennutzer*innen werden nur erhoben, soweit dies zur Authentifizierung und zum Betrieb von KONDATA erforderlich ist. Nähere Informationen finden sich in den Datenschutzbestimmungen der Universität Konstanz.
    4. Die Universität Konstanz übernimmt für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Forschungsdaten keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Datennutzer*innen werden für das Recherchieren in KonDATA und für das Herunterladen von Datenpaketen keine Kosten in Rechnung gestellt.
    6. Datennutzer*innen verpflichten sich, die Lizenzbedingungen der bereitgestellten Datenpakete einzuhalten.

    05.11.2021